Numerical investigation of the effects of thermal creep in physical vapor transport

نویسنده

  • D. W. Mackowski
چکیده

It has been recently recognized that the nonisothermal conditions present in physical vapor transport ampoules can give rise to a slip flow of gas over the side walls of the ampoule. This phenomenon, known as thermal creep, is usually insignificant relative to buoyancy-induced flows under similar nonisothermal conditions, and has therefore been neglected in previous PVT numerical models. However, thermal creep can, in principle, become a dominant convection mechanism in buoyancy-free environments such as those encountered in microgravity experiments. We present here a numerical investigation of the effects of thermal creep on the growth process in axisymmetric, binary component PVT systems. A continuum-based model, which includes buoyancy and Soret diffusion, is developed. We show that thermal creep can result in recirculating bulk flows within the ampoule. For relatively high values of the Schmidt number and large wall temperature gradients, these flows can result in significantly nonuniform distributions of mass flux at the crystal interface, and can also be comparable to or exceed the flow velocities generated by buoyancy under normal gravity. The effects of thermal creep on buoyant convection, and on the Soret transport of the vapor, are examined. PACS: 81.15; 02.60; 44.25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Lattice Boltzmann Method to Investigate the Effects of Porous Media on Heat Transfer from Solid Block inside a Channel

A numerical investigation of forced convection in a channel with hot solid block inside a square porous block mounted on a bottom wall was carried out. The lattice Boltzmann method was applied for numerical simulations. The fluid flow in the porous media was simulated by Brinkman-Forchheimer model. The effects of parameters such as porosity and thermal conductivity ratio over flow pattern and t...

متن کامل

Numerical Study of Spherical Vapor Layer Growth Due to Contact of a Hot Object and Water

Vapor film formation and growth due to contact of a hot body and other liquids arise in some industrial applications including nuclear fuel rods, foundry and production of paper. The possibility of a steam explosion remains in most of these cases which could result in injuries and financial damage. Due to the importance of such phenomenon, this study deals with vapor layer forming, growth, and ...

متن کامل

Numerical study of fins arrangement and nanofluids effects on three-dimensional natural convection in the cubical enclosure

This investigation is a three dimensional comprehensive heat transfer analysis for partially differentially heated enclosure with the vertical fin mounted on the hot wall. The thermal lattice Boltzmann based on D3Q19 method is utilized to illustrate the effects of vertical fins and nanoparticles on the flow and thermal fields. The effects of Rayleigh number and different arrangement of fins on ...

متن کامل

برآورد انتقال بخار آب در خاک‌های غیراشباع تحت تأثیر پتانسیل اسمزی

The transport process of chemical-fertilizers, radioactive materials and other solutes in soils and porous media is important to understand the environmental and economic effects of industrial, agricultural and urban waste disposal methods. In unsaturated porous media, large gradient in aqueous osmotic potential derives significant water vapor fluxes towards regions of high solute concentration...

متن کامل

INVESTIGATING THE PHYSICAL AND MECHANICAL PROPERTIES OF HIGH-COPPER AND SILVER DENTAL-FILLING AMALGAM ALLOYS

Abstract: The aim of the present investigation is to study the physical and mechanical characteristics of dental-filling spherical high-copper and silver amalgams and to compare them with a common high-copper domestic unicompositional amalgam. In this study, cylindrical specimens were mechanically condensed according to the ISO 1559:1986 Standard in order to measure the compressive strength, Vi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002